Manufacturing of a recyclable mould with a robot-assisted 3D printer

Egidija Rainosalo

Centria University of Applied Sciences

Rathish Rajan

Simo Huhtanen

Matti Ojala

Centria R&D in a nutshell

Chemistry and Bioeconomy

- Biomass valuables
- Inorganic materials
- Plastic composites and 3D printing
- Low carbon energy

Production Technologies

- Robotics and AI in manufacturing
- Smart wood construction and coating

Digitalization

- Cyber security
- Drones and autonomous devices
- Future mobile networks
- Software and hardware development

Entrepreneurship and Wellbeing

- Holistic wellbeing
- HEALTH tech
- SME business development
- Development of pedagogy

R&D Staff

All Projects

Total Volume of

Financing Share

8,6M€ 5,6M€ 1,8M€

Project Portfolio Development Services

Value of

Content

- Introduction to mould making
- Materials of printed mould: requirements, availability, development materials
- Mould printing experience
- Future development of robot assisted 3D-printing at Centria

Plugs and Moulds in composite industry

Conventional mould making process

Research and Development

3D printed mould

Material requirements for 3D-printing (LSAM) of mould

- ✓ Chemical resistance to resin components
- ✓ Withstand resin cure temperature and exotherm of reaction
- ✓ Withstand process parameters (consolidation pressure and vacuum bagging approach)
- ✓ Low thermal expansion (CTE)
- ✓ Tool preparation (sealing)
- ✓ Anticipated use (tool life)
- ✓ Storability/ageing resistance

T.Tábi, T.Ageyeva, J.G.Kovács.

https://doi.org/10.1016/j.polymertesting.2021.107282

	Polyester resin	МЕКР	Epoxy resin	Epoxy hardener
ABS	X	X	\checkmark	X
PA6	\checkmark	\checkmark	\checkmark	\checkmark
rPET	\checkmark	\checkmark	\checkmark	\checkmark
PP	\checkmark	\checkmark	\checkmark	\checkmark
PMMA	X	X	X	X

Strategy and compounding

- Cheap matrix → Polypropylene chosen
- Reduced thermal expansion → wood fibre
- Increased bio-based content → 40% wood fibre
- Recyclable production waste
- Recyclable product

Lyondell Basell Moplen EP240H

Twin screw extruder, throughput up to 150 kg/day

Robot assisted 3D printing

UR10-robot, compressive type screw extruder, weight when unloaded was 6,5kg Printing speed 100-200 g/h, 3 mm nozzle

Recycling of coated mould

- Multiple recycling
- The mechanical property after two recycling cycles remained same as virgin WPC

3D-printing of moulds using thermoplastic material

925 x 590 x 81 mm

CNC machining at MMI Company Ab Oy

Some thermoplastic fiber reinforced materials for LSAM in the market

Manufacturer	Product	Polymer	Fibre	Content, (%)	Tensile Modulus, (GPa)	Tensile Strength (MPa)	Extension at Break, (%)	Tg, °C HDT, °C
UPM	Formi 3D	PLA	Cellullose	20 or 40	3,6 or 5,4	39 or 48	4 or 2	(53°C)*
Stora Enso	DuraSense® 3D Plus 50	PP	S-wood	50	2,7	45	7	(75°C)*
Polymaker	PolyCore ASA-3012	ASA	Glass fibre	20	7,237	101	2,6	Tg 98°C, 97-104°C
Sabic	AC004XXAR1	ABS	Carbon fibre	20	11,8/2,9	89/18 **	1/0,7**	101°C
Victrex	PEEK 90CA30	PEEK	Carbon fibre	30	28	275	1,4	Tg 143°C, 342°C

^{*} Polymer of same type

^{**} Printed test specimens: along print/perpendicular to print direction

Thermoplastic biobased 3D-printing materials compounded at Centria

Manufacturer	Product	Centria modification	Tensile Modulus, (GPa)*	Tensile strength (MPa)*	Extension at break, (%)*	Tg, °C HDT, °C*
BrightPlus	BrightBio® LOIMU-K35	Added 20% spruce saw dust	1,76	40	22	Tg 57°C
BrightPlus	BrightBio® LOIMU-D55	Added 20% spruce saw dust	1,3	35	110	49°C
BrightPlus	BrightBio® LOIMU-C73	Added 20% spruce saw dust	3,2	66	5,2	Tg 57°C
Stora Enso	DuraSense® 3D Plus 50	Added neat PP, final fibre content 30 %				

^{*}Properties of polymer without fillers

Weathering – cycling 23 \rightarrow 65 \rightarrow -10°C, RH 93%

Tests - mechanical properties before weathering

Summary of benefits when 3D printing moulds using thermoplastic natural fiber filled materials

- Modern technology more attractive to workers
- Less hand work
- No or less dust, improved health of people
- Easier sandable
- Wearing of tools lower than in case of glass fiber
- Possibly improved business profitability through implementing new business model

Environmental benefits

- Recyclable/re-manufacturable product
- Environmental benefits: less waste, waste is recyclable
- Biobased materials used

Inventory: Ecoinvent 3.1. database in Simapro software LCA assessment method: ILCD midpoint+

Investments

Software for advanced printing

- 45° printing
- Printing on non-plain, e.g. curved shapes
- Multidirectional printing

Machine vision system

- Camera, scanner
- Software

is acg. cos too.paciis

Nonplanar toolpaths

CCOTIO

Research and Development

Future

- Further material testing and development
- Printing parts for boats and eventually boat hull
- Printing using recycled grinded material
- Development of surface modification methods

egidija.rainosalo@centria.fi +358 447250264

R&D enablers

